

Pesticide Residue Analysis and Global MRL Compliance

Patrick Brennan

Food Safety Sales Director AGQ USA

agenda

MRL Harmonization and Pesticide Residue Analysis

Strategies for MRL Compliance

Residue Data and MRL Compliance Trends

Pesticide Metabolites and Residue Definitions Challenges

The Never Ending Story: MRL Harmonization

- New uses of existing chemicals (Ex:Pre-harvest vs post-harvest use)
- New studies leading to reduction and/or removal of existing MRLs
- New chemicals with limited # of MRLs established
- New invasive pest issues
- Abrupt new dietary trends
- Costly and time consuming to establish new MRLs
- Differences in data interpretation and registration policies

MRL Harmonization: Multiple Fronts

- Differences in residue definitions
 Ex: US Fosetyl-al = Fosetyl-al vs EU Foestyl-al = Fosetyl + Phosphonic Acid
- Differences in corresponding MRL values
 Ex: Sweet Potato TBZ MRLs: US- 10 ppm / EU- 0.01 ppm / JP- 0.05 ppm
- Lack of MRLs established (missing MRLs)
 Ex: China, Hong Kong, other emerging markets
 Ex: 16 US MRLs established for Quinoa vs 141 US MRLs established for Rice
- **Policies for residues with no corresponding MRL** EX: Default, Deferral, both, or neither

Pesticide Residues: Additional Challenges

- Secondary Standards Ex: LIDL US
- Food Additive Regulations Ex: Post-harvest fungicides in Japan
- International Organic Compliance (in regards to pesticide residues) Ex: Taiwan Organic certifier black list
- The few misleading the many Ex: 100 ppb vs 0.1 ppm of glyphosate

Common Reasons for Residue Testing

Certification Requirements

Ex: Global Gap

Customer Requirements

Ex: One residue test at beginning of season vs per lot testing

Internal Pre-Export Testing Programs

Ex: test, hold, ship

Verification of Post-Harvest residue concentrations

Ex: Desired residues to reduce decay

Residue Degradation and process studies

Ex: Develop export market PHI or raw material residue specifications

Pesticide Residue Analysis: Sampling Considerations

• Residue results are a reflection of application and sampling techniques

•Specific Sampling SOPs

- •Every commodity is different
- •Sampling location/methods: Field vs Packinghouse vs FDA DWPE
- •Proper Labeling and traceability
- •Consistency: do what you say and say what you do
- •Poor sampling leads to useless results and more money/time lost

Pesticide Residue Analysis: Laboratory Considerations

- Residue results are also a reflection of the lab analyzing the sample
- Technical Capabilities
 - ISO-17025 Accredited? \rightarrow Yes
 - Scope of the screen? \rightarrow 300-400 chemicals including metabolites
 - Limits of Quantitation? \rightarrow 0.010 ppm for every chemical
 - Instrumentation? \rightarrow GC-MS/MS + LC-MS/MS

Practical Considerations

- Turnaround times?
- Informative Report Format?
- Additional tools?
- Cost per chemical? Total cost per sample?

agenda

MRL Harmonization and Pesticide Residue Analysis

Strategies for MRL Compliance

Residue Data and MRL Compliance Trends

Pesticide Metabolites and Residue Definitions Challenges

MRLs: Opportunity Cost vs Non-Compliance Cost

• 2 types of trade disruptions due to of MRL differences

- 1. Not being able to export product due to residues being over export MRL
- 2. Unknowingly exporting product with residues over destination MRL

• 1 is more common but 2 is more impactful to industry

- EX: Korea detected Piperonyl Butoxide on US export over Korean MRL
- Impacts:
 - US export industry lost preferential status (only random testing)
 - To regain preferential status there must be zero violations for 5 years
 - Increased surveillance testing increases chances of second violation
- •How to reduce lost opportunities?
- •How to avoid more significant impacts of non-compliance?

MRL Compliance Strategy: Plan Ahead!!!

Communication is the key to success

- Sales picks export markets
- PCAs/Applicators choose the chemicals
- Food Safety/QA conducts the testing to determine compliance

• Export market MRL risk assessments

- ID alternative chemicals which have less risk to exceed export market MRL
- Compare application records to ID high risk product for pre-export testing
- •Degradation and Process Studies to increase likelihood of MRL compliance
- Finished product sample for Multi-Residue Analysis prior to exporting

MRL Risk Assessment by Active Ingredient												
Blueberry highbush		Legend:	Low	Medium	High							
Dideberry, mgnbash	Origin	Risk Risk Risk					ort Markets					
	United		Furopean		EXP	ore markets						
Active Ingredient	States	Canada	Union	Japan	Korea	Taiwan	China	Codex	Hong Kong	Australia		
2,4-D	0.2	0.01	0.1	0.1	0.05	0.1	0.1	0.1	0.1			
Acetamiprid	1.6	1.6	2	2	0.5	1	2	2		1.6		
Aldrin	0.05	0.1	0.01	0.05	0.01	0.01	0.05		0.05	0.05		
Azoxystrobin	5	3	5	5	1	5		5	5	5		
Benoxacor	0.01	0.1		0.01								
Bifenthrin	1.8	0.1	0.01	2	0.3	1		3		3		
Boscalid	13	6	15	10	10	10		10	10	15		
Captan	20	5	30	20	20	20	20	20	20	20		
Carbaryl	3	7	0.01	7	0.5	0.5						
Carfentrazone-ethyl	0.1	0.1	0.01	0.1	0.1	0.1			0.1	0.05		
Chlorantraniliprole	2.5	0.35	1.5	3	1	2	1	1	1	3		
Chlordane	0.1	0.1	0.01	0.02	0.02	0.01	0.02	0.02	0.02			
Chlorothalonil	1	0.6	0.01	1	1	1			10	10		
Clethodim	0.2	0.2	0.1	0.01	0.05	0.01				0.2		
Clopyralid	0.5	0.1	0.5	0.01						0.5		
Cryolite	7	0.1	0.01	0.01					7			
Cyantraniliprole	4	4	4	4	4			4		4		
Cyprodinil	3	4	3	5	1	3		10		3		
DDT (DDE, DDD)	0.1	0.1	0.05	0.5	0.05	0.01	0.05		0.05	1		
Diazinon	0.5	0.1	0.01	0.1	0.05	0.5			0.5	0.5		
Dichlobenil	0.15	0.5	0.01	0.01	0.05					1		
Dichlormid	0.05	0.1	0.01	0.01								
Dieldrin	0.05	0.1	0.01	0.05	0.01	0.01	0.02		0.05	0.05		
Difenoconazole	4	4	0.1	4	0.5	1						
Dimethoate	1	1	0.01	1	1	0.01				5		
Diquat dibromide	0.05	0.1	0.01	0.03	0.02					0.05		
Diuron	0.1	0.1	0.01	0.05	1	0.01			0.1	0.5		

US Origin: Highbush Blueberry MRL Risk Summary

• 95 US MRLs for Highbush Blueberries

US Origin: Almond MRL Risk Summary

• 125 US MRLs for Almonds

Pesticide Degradation and Process Studies

- Degradation studies can be designed to establish custom PHI's to meet export Market MRLs
- Process studies designed to establish pesticide residue specifications on raw materials in order for processed commodity to be within MRLs
 - EX: Useful for oils, concentrates, dehydrated products, etc...

Pesticide Residue Degradation Curve: Basic Theoretical Example

agenda

MRL Harmonization and Pesticide Residue Analysis

Strategies for MRL Compliance

Residue Data and MRL Compliance Trends

Pesticide Metabolites and Residue Definitions Challenges

Pesticide Residue Metabolites: Contradicting Definitions

- Issues arising due to residue definitions and pesticide metabolites are not easy to overcome
- Degradation and Process studies not as effective
- More advanced MRL risk assessment will help identify areas of risk due to metabolite issues to perform pre-export residue testing
- Long Term Solution:
 - harmonizing definitions and enforcement policy to reduce lost opportunities and MRL exceedances due to residue metabolites
- Short term solution:
 - Avoid use of chemicals with metabolite issues in targeted export markets

Contradicting Definitions: Thiamethoxam and Clothianidin

- US and Canadian definition summary:
 - Thiamethoxam= Thiamethoxam+ metabolite Clothianidin
 - Clothianidin= Clothianidin
- 15 commodities have higher US MRLs for the metabolite Clothianidin then they do for the parent molecule Thiamethoxam
- Consequently the use of clothianidin can result in product exceeding US and Canadian Thiamethoxam MRLs
- Issue for domestic growers but also for producers exporting to the US and Canada

Contradicting Definitions: Thiamethoxam and Clothianidin

List of Commodities with Higher Clothinadin MRLs than Thiamethoxam

MRLs in US and/or Canada:

- 1. Table Grape
- 2. Wine Grape
- 3. Potato
- 4. Apple
- 5. Pear
- 6. Nectarine/peach
- 7. Sweet potato
- 8. Bell pepper (just US)
- 9. non bell pepper
- 10. Carrot
- 11. Tea leaves
- 12. Ginger
- 13. Ginseng
- 14. Turmeric
- 15. Wheat straw (just US)

Example: Table Grapes

- Clothianidin US/CA MRL- 0.6 ppm
- Thiamethoxam US/CA MRL- 0.2 ppm

AGQ Reporting Format:

- Clothianidin=Clothianidin
- Thiamethoxam=Thiamethoxam
- Thiamethoxam (Sum)= Thiamethoxam+Clothianidin

Contradicting Definitions: Thiamethoxam and Clothianidin

The following results were higher or equal to the LOQ:

Parameter	Result	Units	MRL US
Boscalid	0.52	mg/kg	5.00
Clothianidin (SP)	0.33	mg/kg	0.60
Cyprodinil	0.76	mg/kg	3.00
Fludioxonil	0.30	mg/kg	2.00
Iprodione	0.02	mg/kg	60.0
Myclobutanil	0.25	mg/kg	1.00
Pendimethalin	0.01	mg/kg	0.10
Pyraclostrobin	0.27	mg/kg	2.00
Tebuconazole	0.54	mg/kg	5.00
Thiamethoxam (Sum)	0.33	mg/kg	0.20
			NO

Total Table Grape Samples Per Year/Country

Table Grapes: US/CA Thiamethoxam MRL exceedance due to Clothianidin residues

Contradicting Definitions: Thiophanate Methyl, Benomyl and Carbendazim

- Residue Definitions for these 3 chemicals vary greatly between Markets
- US
 - •Thiophanate Methyl= Thiophanate Methyl including its metabolite carbendazim
 - Benomyl= NO US MRLs
 - Carbendazim= NO US MRLs
- Japan
 - Carbendazim= Thiophanate Methyl+Benomyl+Carbendazim
- EU
 - Thiophanate Methyl= Thiophanate Methyl
 - Carbendazim= Carbendazim+Benomyl

Contradicting Definitions: Thiophanate Methyl, Benomyl, and Carbendazim US Scenarios

- Carbendazim residues can be present as a result of the following:
 - Metabolite of Thiophanate Methyl application
 - Metabolite of Benomyl application
 - Direct Application of Carbendazim
- Benomyl residues can be present as a result of:
 - Direct application of Benomyl
- Thiophanate Methyl residues can be present as a result of:
 - Direct Application of Thiophanate Methyl

Total Strawberry Samples per Year/Country

Strawberries: US MRL Violations due to Benomyl+Carbendadizm

Total Wine Samples per Year/Country

Wine: US MRL Violations due to Benomyl+Carbendadizm

Conclusions

- Companies who master managing export MRL compliance have competitive advantage and help maintain good reputation for their respective industry
- Important for trade associations to protect their industry's by educating on the impacts MRL non-compliances and encouraging pre-export testing
- Results are only as good as the samples taken and the laboratory analyzing them
- •Help from regulatory bodies, registrants and agrochemical industry to minimize impacts due to contradictory residue definitions

Sources

All MRLs sourced from **globalmrl.com**

